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REPORT No. 624

TWO-DIMENSIONAL SUBSONIC COMPRESSIBLE FLOW PAST ELLIPTIC CYLINDERS

By CarnL KarrLan

SUMMARY

The method of Pogyi ts used to calculale, for perfect
Ruids, the effect of compressibility wpon the flow on the sur-
face of an elliptic cylinder at zero angle of attack and with
no circulation. The result is expressed in a closed form
and represents a rigorous determination of the velocily of
the fluid at the surface of the obstacle insofar as the second
approrimation 1s concerned.

Comparison is made with Hooker’s treatment of the same
problem according to the method of Janzen and Rayleigh
and it is found that, for thick elliptic cylinders, the two
methods agree very well. The labor of computation is,
moreoter, considerably reduced by the present solution.

The third approximation to the compressible flow about
circular eylinders, inchuding the terms inrolring the factor
(rofce)?, 18 also obtained and compared with the resull giren
by Poggi. It is found that the erpression giren by Poggi
is Incomplete with regard to the terms containing the factor
(rofca)’.

INTRODUCTION

The purpose of this paper is to employ the method of
Poggi (reference 1) to determine the effect of compressi-
bility on the flow about elliptic cylinders. This prob-
lem has already been considered by Hooker (reference
2) who made use of the method of Janzen and Rayleigh
but, owing to the necessity for expanding a certain
function in the analysis, the “thickness ratio” of the
ellipse to which his result applies is imited. The thick-
ress ratio of an ellipse is defined as the ratio bfa, where
« and b are the semimajor and semiminor axes, respec-
tively. The method of Poggi, on the other hand, not
only permits an unrestricted thickrness ratio but also
reduces the labor of computation.

Brietly, it may be said that Poggl considers compres-
sible flow to be replaced by an incompressible flow due
to a distribution of sinks and sources throughout the
region of flow. The strength of the distribution in the
plane of the profile is given by

1 /0007 D(p or
5l 3£5¢ 5307 Jietn
amdl in the plane of the Cil'Cl(‘, into which the profile is
mapped by a suitable conformal transformation, by
-L(} O ry
dwer ON

Y )— d\d6

where
r, 8 are the polar coordinates of a point in the
plane z(=z-+iy) of the circle.
R, & the radius of the circle into which the pro-
file 1s mapped and the angular coordinate
on this circle, respectively.

R 2¢. 10é,

>\=7; L=—51 =—73p ¢ is the velocity
potential of the flow.
v, the magnitude of the velocity of the fluid
in the plane of the profile.
¢, the magnitude of the local velocity of
sound.
Poggi then finds that the total velocity induced, at
any point P(R, 6) of the circular boundary by the fore-
going system of sinks and sources, is:

“oxn T\ 08 .
AI__f f T2 cos 9—3)+ ) SmE—8)drdd (1)

Poggi’s method of approximating the compressible flow
of a perfect fluid is based on the assumption that the
incompressible flow is a suitable first approximation
and that therefore the values pertaining to that flow
may be substituted for z,, z5, and #* in equation (1).
The value of Ar thus obtained then represents the
effect due to compressibility and is to be added to the
already known value for the velocity of the incom-
pressible flow. That is,

l‘compzvx‘ncama":‘AU (2)

It is to be noted that, in equation (1), the local
velocity of soind ¢ is not a constant but is related to
the velocity v of the fluid in the plane of the profile by
means of Bernoulli’s equation and the equation of
state of the fluid. Thus, if the adiabatic equation of

state is adopted,
1——):, (31

C":('()E[l *,'“

where ¢y, 1y are the correspomhng magnitudes in the
undisturbed stream and y=1.1408 for air.

In order to facilitate the solution of equation (1),
1t has been the custom to replace ¢ by ¢,.  This simpli-
2143
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fication of the problem max be justified by the following
argument. It has been tacitly understood that no-
where in the fluid must the velocity of the fluid exceed
that of the local velocity of sound since the incom-
pressible flow has already been assumed to be a good
first approximation and the effect of compressibility
is merely to distort the streamlines associated with the
incompressible flow. As the maximum fluid velocity
occurs at the surface of the obstacle, there exisis a
value of /e for which the maximum fluid velocity
cquals that of the local velocity of sound. ‘This
critical velocity of the fluid is obtained from equation
(3) by replacing ¢ by ¢. Thus

R Y ()(.2 —1 " 27
(‘Irau-:vair‘: ( +'Y 2 —072) (4)

This value for ¢ is a lower limit under the condition that
now here in the fluid is the local velocity of sound ex-
ceeded,  The maximum value of ¢ occurs at the stag-
nation point =0 and is given by

-—1 o
Cy q:-"‘(ﬂ<1 o —0§> (:))

= Cy

Thu~ both the maximum and the least values of ¢ occur
on the oh=tacle and evervwhere else €,0: ¢ >Cr0er. It

follow~ from equation= (1) and (3) that
Co oy C =2\ -
i “"”==(Lnb>7(}-+(x204 ‘?>

C, Coy™

which mmereases very slowly as /¢ approaches uniiy.
rrmr (‘Iu.\‘l .

In fuet, it i< reen that the upper himit for T I
0

0.0073.  The foregoing discussion thus shows that ¢fe,
may, a< a first approximation, be taken to be unity.
Equation (1) then hecomes

‘! < oc* T _a_t:
1 tr DA A0
2recJo Jo 1—2N cos (0—6)+ N

OF A PERFECT COMPRESSIBLE FLUID
PAST AN ELLIPTIC CYLINDER

sin (6—8)d X (6)

THE TLOW

Let the ¢ plane be the plane of the ellipse and the =
plane be the plane of the corresponding cirele.  Then it
= well hnown that the Joukowsk transformation

G- I (N

map- b coele ol tadius ¢ with 1tz center at the origin
of the = plane Into the Iine segment (—2a, 0; 24, 0) 1n
the ¢ planc. Ao, the circles concentric with the eirele
of radiu~ « are transformed mto a family of confocal
cllipse< with connuon foct at (—2a, 0) and 2a, 0). If
e a) denotes the radius of one of these circles, then
the semimajor and semiminor axes of the ellipse into

1

which it is transformed are, respectively, R-}—(JI—?- and

R-—}I{ The thickness ratio ¢ then becomes:

ai’
{_R_T?__ 1—¢?
T, 1462
RTR
or
.
Tt
where
8
°=R

1f w denotes the complex potential of the incom-
pressible flow in the z plane when a stream of velocity z,
impinges on a circle of radius R in the direction of the
negative x axis, then

w=1, <z -}—I—i—> 8)

The complex velocity in the ¢ plane is then given by

dw_ dwdz
dy ™ dz dt
or
dw_ SR (9)

&y e
. 7 a . .
When )\‘—‘7 and o= pare introduced, it follows that

L lduy

._l 2 1~2)\"’ cos 204\
] T TP 1—262A2 cos 280 UAY

(10)

Following Poggi's procedure, the Fourier development.
of #%/r® “111 be obtained. Thus, by the use of the
expansion

1 1 -
= ) 2n °
1—25°N cos 20+ o'\t 1—-.7*%[1 12 2 (o) cos “"’0]

(see appendix, sec. 1),
it {ollows that

tvi4 1 )
z—;=3(10+203n Ccos 218 an
?'0. < n=1
where
ol (=264
Qy==c 1—‘04)\4
and fora=1,2, . .. ...
1—-—«7 (PN —1) in
=230 i, (oM
Also from equation (8)
7, =—"Zo(1_>\-) cos 0 D)
r9=0,(1-+ A2} sin 8 } (12

PO,
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Then, inserting the expressions for »*, r,, and ry given

by equations « 11} and {12y into equation 6 and making
use of the integrals

e '\ln 'rf*“')) " /H . 0 if [l:O
o 1—=2X\cos »lAm«,\-'\m T EN T eos né i n2 0
ssee appendix, seel T
i sin ' —3i i P ] iftn=0
=, 0l pHdg = - PO
b 1 =2Neon g — x0T |_~,T, Sinndifnz

it follows withont ditliculty that

Ar n . > , . -
I I S (2 =1 sin Qn135
0 - it=n

"1
] (N —,\-‘"“(l_-,“zw[x] (3
Y
where
_/'.,"
M e

Substituting for the a,,'s from equation (11), equation
(13) takes the form

An [—af . , &2 . R
f——:g‘{i[\'m —(1—g%) 25 @n4-1) sin 2n+-1)5
) s ag R
= —o A -
‘” 1 o \:' \ l[\
Replaecing M by 7. for purpo-es of integration only, it

follows that

- \

[=27 24 1) sin 2n+- 115 = (NN
n=9 b 1""

1 ) 2
Y\ e L —o°7 ,
=—R.DP. ol @ Lersn ‘OJ — s (er)dr

n “l)

or

220% 1 —677
213 dT
1—6"'e 51—t

[=R.P. of wf(

1 I(1—d%)?

2(1_26'-’ cos 25_:_0,4)21 P [(1——30' o) sin é

y o ag 1+4°
-+ 7 sin 34| IogI:g
L LT cos 25—96% fan-t 22502
T [(1-+6*) cos 26—2467] tan T
(1+ ’)(1—0-'2‘ 25 loe LE27 c0s 542
- 3 S g T s Lo

+2[(1+ a2+ o) sin 6—o? sin 30}/
)

Therefore
Av pl—e*/ . .
=3 —y—( sin &
Lo A o
l—g* 1l —g?)? .
(1=2¢% cos 26 +a'i* 24 (1430%+0" sin §
26 1 2

4+ sin 36] log l -7
S l—gf

ROTTN—39  —17

|

.

-l

{I1=)(1—¢"? . 1+2¢ cos d—0°

— ——-———:in 26 log —
2 1—26 cos §—o*

()’ ‘lll l)

1—g¢° . 2
-:-——U[\I*v‘) co3s ‘.’6—20*]&1!1‘* T
a I -

S
ol 1ty i At i 23 |
+2] (1 =655 2in 6—0° 310 36 ‘

Fors="

RS

. the position of maximum velocity on the <ur-

lvl"

face of the elliptic e¢xlinder.

1"‘0’" (rlf—l—r:
(l* ) “l*a"
1 2
—~227% tan ‘a-—.?]
T J

[t is interesting to note that the expression for Ar r,
at the surface of a circular eylinder fixed in a stream of
veloeity o, impinging on it in the direction of the
negative x axis may be obtained from equation (14} by

1o

. a R
allowing a<=§> to approach zero. Thus, making use

)\“[Ul =1

i
1 -
—(IL—I)U4]02" cos 204 (<ee appendix, sec. [
4

of the expansions

1 1 [

- 3 - 5= —— i l+at
(1—2¢° cos 26~¢')’ (1—a')?!

1420 cos 40 2 ot
log ——=1> ——— c0o3 (2n 135
1—2¢ cos 6+4° ,,Z.%-n——l e
o 2¢sing @t o
tan™! m—— =23 ———sin 2n+1)5
1—¢" n:u-]l";"‘l
1Lg? ERp R R
log ——5=2
> l—g n=p2n—+1

it follows, neglecting terms containing powers of ¢
higher than the second, that

Ar .
_—b=’;( I —a')(.é sin §—sin 35>
g = 3
or
Lim .XL‘__ g - 1o ﬁ_> N
om0 1, —M 3 sin §—3 sin 3 (16)

This expression for Ap/y, agrees with that obtained
by the methods of Janzen, Rayleigh, and Poggi (ref-
erence 3).

The effect of compressibility, i. e., Az/ey, having been
found, it follows according to equation (2) that the
total velocity at the circular boundary in the z plane

is given by
.o, A -
( > =2 310 6+ — (17)
o/ cirete DJ

and on the elliptic profile in the ¢ plane by

b 1
(E))ellwu“—(l—.-)az (GO -')6:—0—‘))? LTO cirzle (lS)
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Table 1 shows the comparison between the values of
(1) aanzse caleulated according to equation (16) and
those obtained by Hooker for an ellipse of thickness
ratio =1 or ¢°=14. The values for the corresponding
incompressible flow are included. It is seen that the
results of the two methods agree very well.  This agree-
ment 1s not unexpected since Hooker’s method is par-
ticularly applicable to thick ellipses. Consider, how-
ever, a slender ellipse, say t=1, or ¢*=%,. Table 11
shows thie comparison between the exact calculations of
the present method and the results obtained according
to Hooker's method. The disagreement is more evident
than that shown in table I for the thicker ellipse.

I Y

Compressivle

tncompressible
T

e e

)

100

<0 &0

¢ ,deg.

Fiorar b - Thovdety of the fluid on the surface of an elliptic exlinder of thickpes~
Totio 1 for camnpressible aud incompressible flows with i =057

Fizure 1 shows the graph (020 caleulated accord-
iy to Poger’s method for both the compressible and
the Incompressible flow~ past the ellipse of thickness

ratio e with « e 0.857.
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TABLE 11

g - N .
r-(o: 0.557; thickness ratio=14,
() |
1o J ellipse X
3 i
(deg.) i ‘
Hooker's Pogei's Incompres. !
| method = method sible '
1 i
o | o | o
5 L6793 i L6342 L7244
10 . 9005 L9395 . 9569
& L 9U04 1. 0056 1. 0307 i
20 1.0433 1.0749 1. 0608 !
30 1. 1080 1. 1146 1.0839 !
40 1. 1332 1.1271 1. 0924
50 1.1320 1.133% 1.0962
60 1.1273 1.1374 1.0053
70 L1336 1.13%4 1. 0994
80 1. 1501 : 1.1403 1. 0999
90 11552 H 1.1306 1. 1000
)

THE PRESSURE DISTRIBUTION

According to Bernoulli's theorem and the adiabatic
equation of state, if p and p are the pressure and density
of the fluid, then

Zl:(’i)"_—:,:l_'_L_l <1__7:L>]-:—1'1
Po Po Tk 7y

where p, and p, are the pressure and density, respec-
tively, in the undisturbed stream. Expanding the
right-hand side of the foregoing equation and neglecting

1.2

T

i 1

|

L

o

|
|
|
f
|

I

L

T

. Cor}rpressib/t_’
— — — — /ncompressible

6,cdeg.

&C

F16URE 2.—The pressure of the fluid on the surface of an elliptic exlinder of ihi kness

ratio 1/10 for compressible and incompressible flows with1o/co=0.557




TWO-DIMENSIONAL SUBSONIC COMPRESSIBLE FLOW PAST ELLIPTIC CYLINDERS

terms involvine powers of g higher than the first yields

)05+

The pressure rhen obtained by sub-
-fitnting ior » - Jiso Table ITL shows
the pressure disirtbution over the wnrtace of an ellipse
of thickness ratio 110 with e =0 357, and ligure 2
shows the graph of this distribition together with the
one due to the corresponding incompressible How.

(19)

di~tribution i3
frovn vqu:ninq

TABLE III
r:() S37; thickness ratio = 110
Li]
'———«77*" i - T
{ D—m
It
s 2
(ileg)

Incormpress-

t Cumpressible | ble
i

1

0 1. 138

.
5 LG633 i
10 Jles |
13 ! — i3
n 1L
315

|
|
|
|
!

2570

ol

Frabrapnl

THE ATTAINMENT OF THE LOCAL YELOCITY OF SOUND
AT THE SURFACE OF AN ELLIPTIC CYLINDER

According to equation (4) the eritical velocity of the
fluid is given by

Verst _Ll —1 9
( >_” : u ‘1':_1 (_0)

For an elliptic cylinder, at zero angle of attack, the

critical velocity occurs at 6=35, the position of maximum

velocity on the cylinder and also in the region of flow.
Hence substituting from equation (18) for (2/vg)erripse ab

6=§ vields a cubic equation in the variable u.
Thus, [rom equation (15), if

—o 1= [(1—o)?, 1+4°
fle)=" 5 LT FL 2 8 T

—‘21 — t:lxl“«r—}—?]]
g

ff<v>12u3+4f(a)f+|:4—773(1+a‘2>2]u

_2(1+44%°
~41

then

=0 ©1)

where y=1.408 for air.

Table IV gives the critical values of wfc, for the
entire range of thickness ratios including the limiting
cases of the straight-line segment and the ecircular

249

profile. Figure 3 shows the critical values of #5/c,(= y )
plotted against the thickness ratio.

1l t -
,Stroight-fine segmert . ! ]
. Il ‘ . . . '

70 ‘ J\i ‘ 1 '

v, /¢, (criticol)

¥
4
!
!

50 —
: cucuicr
] cro'e.
! [ i \
£0 i s | o f 1 )
2 2 F o .8 . 2

Thickness rct o, t

F1GURE 3.—The critical ratio r+/co as a function of the thicknessrat o ¢,

TABLE IV
— ; B
+ N 1
o2 i Thickness — |
rat N
: [R 41 TN
1 0 L]
19,21 120 : U1y
911 110 : LN3T
43 LY ' 13
7 ! 13 ‘ .30
304 i L7 ‘ N
57 : 15 [ Ty
23 l 45 ‘ )
3{5 1% { L]
L2 | 13 3
1,3 ! 12 577
15 | 23 2
1'7 ) 34 ' 453
9, U] ! L4
0 : 1 . 420
.

THE THIRD APPROXIMATION TO THE COMPRESSIBLE
FLOW ABOUT CIRCULAR CYLINDERS

In reference 2, the opinion is expressed by Hooker
that the terms involving (ry/ce)?, thus far neglected,
may become of considerable importance as the loeal
velocity of sound is approached on the ellipse. Hooker,
however, did not investigate the matter any further.
In reference 4, Poggi calculated these terms for the
compressible flow about a circular cylinder, but a close
examination of his work shows that not all such terms
were taken into account. In what follows the terms
neglected by Poggi will be obtained and compared with
the already existing ones.
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The fundamental integral equation (1) may he written
< follcws:

o

72

-5 0.3
7_) -}}u ] /9 La
ff _tg ON dA A A Lo a(/ _
1~ 2N cos (6—d)+
[ — + . ]sm (6—8)d\dp (22

where 1/¢8 has boon replaced by a power series in
pi=1rS/cs) obtained from equation (3);1. e

L) ]

The method followed by Poggl was to substitute for
T,, Ty, and ¢ expressions pertaining to the incompressible
flow and thus obtain the following result: !
Ar D DA 23 .11 .
5\ mé— - sin 30);1—;— (1 —1)(m sin 5——4—6 sin 368

2“

| B .
- Qo Jo)p"’-{- (23)
The veloeny for the compressible flow at the surface of
the arenlar evhinder then becomes:

Vinco Py Ar

=t (24)

Ty o T

N
Ceomp

where A )i given by equation (23).

F.quation 21) thus represents the second approxima-
ot 1o the compressible flow, the first approximation
beinge the purely incompressible flow given by 2ue0mpite.

The third approximation may be obtained, at least in
principle, by <abstinuting for #,, ¢, and 27 in equation
€224 expression~ ha<ed on the second approximation,
Such eapres-ions, as far as the terms mvolving u are
concerned, are given in reference 3 and are as follows:

s ‘ K . 13.,,3,,_ 5 6>
T‘»«"-(]'—)\)(0.\0*;1[(“?‘.-‘2‘)\‘7'5)\_12)\ cos 0

WANEE NI
+( = ) eon .;a:l
) . 13, 1.,. 1 .
) 55 IR SRS N p[( ]2)\'—"2’)\4-‘-'1—:2)\6) sin @
-‘(—-:{)‘*]A") m 36 |-
A A
g ., 7 ’
Yocos 2 u[( 1“ )\‘-%)\f’*jl;)\‘)

N
( RN
‘

LT VRN SN S
STt D Teduec

aethicents of -,

|~

] \ .
NS ) co= 264N com 40]—
)

were obtained for ell:ptic evhinders
1 enquation (231 for the circle  How-
~1 5% are given, respectively, as 1t zn
and b onowanr toslphierrorin the Ghoubiions Pistoles: (reference 3) gives for the
e nt of g o the value 32wl s vew of the independent check of Pogor's
re 21t 0y the w31 s behieved to b s

—1 .
[AETN RTINS S
RN TH

Coer, L, tcfeTer 0 S
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R

where 1t is recalled that A= ,

When the foregoing expressions are substituted into
equation (22) and only the terms involving g and g? are
evaluated, it is found that, besides the terms given by
equation (23), the following ones involving x? must be
included:

of 37 25 . 3. >
140 sin 6— 54 S0 35+§ sin Hé
These terms seem to have heen overlooked by both
Poggi and Pistolesi (reference 3).
The third approximation to the comnpressible flow at
the surface of the circular cylinder then becomes:

1comp

sin 6+<— sin 6— 7)- sin 36 )_u

(206)

It 1s iInteresting to compare the maenitudes of the
various terms in equation (263 at the position of maxi-
mum velocity §==/2 and for the critical value p=0.1670

(obtained by means of equations (20) and (26)). Thus
D 2P
(2 sin 6),5-
2 . 1 .
p(§ sin 6—5 sin 36)6%:0.1948
3—~ sin 6—= sin 35-{—4 sin )5) =0.0653
40 5 ° ' T
23 3 N 11 -] Q1 1 .1 -*‘
* 7-—1)(15'0 S 6 3 SN .»6—;—1\, S "9,).5“- =0.0067

Thus, it is seen that the terms imvelving g? do become
of importance with regard to the o terms as the local
velocity of sound is approached on the cirele and that
the main contribution i< made by expre<sion (25).

LANGLEY MEMORIAL AERONATUTICAL LLABORATORY,
NaTioNal ApvisorY COMMITTEL TOk AERONAUTICS,
LaxcrLey Fiewp, Va., February 11, 1938,
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APPENDIX

t f

{. The Fouricer Fg auston of =
e b ¢ f g 1—25)\ o= 20— g\

12 cos i adne Lhy o e e
: l
[[: oy A VL. T T T, T, T I
I—2g°N vcus 20 57N — A =Ny
Sinee, by the binomial theotem, .
- !
B NI’ o CRVE R
and
(l—a*Ne = =300 N 0 -
o)
it follows that
o < o s ,
I = Z Z(U.A.)J:ke-zu«»‘,d
=0 k=
Let
Jj+k=n
and therefore
J—w=n=2k j=n-—Lk
The double series then becomes |
I'he doubl then |
5 |
1[50 S g Nsyme-on ;
Qo =0
The terms of thisz series ean be wrouped i pairs such
that

a, 1—l {
M=oY (037 cos (020120 (1)
[ Y |
_}‘_51_ can—1 . he o limit aecordine as .
wnere 5) Ol ) I~ the upper imilt according as n Is

even or odd and where the factor 2 1z omitted from the

. . n . .
term for which n is even and k==5- This term is

independent of 4 and there is only one such term, not
two.
The series (1) may be written as

n =]

H=32"SY A, cos (n—2k)28
n=¢ £=0
where
Ay=2(c2\2)"

Expanding this series and rearranging the terms in the
form of a Fourier series,

1 o x -
H=33 s+ 25 cos 2082 A,
“n=0 n=1 k=0
But
R =y =
e I—g'\
:lll([
- (’ 1
Do =2 1“(, EN )R
?:J nT 7 A.,u ’ l .\{ l

Therefore

1 2 .
[7[7:1——«1‘,\*’[1 ‘--'.";«a.\;"ms '_’//*)jl 2
IT The Intecrals

7 ['-’-’ ~in J—4) ol
oSy = ——————— = 5 (*03 'l
! y L=2X\ cos 80— S\ o

.

and
sin (B—o) .
Jr= <in 29dd
o L—2X\ cos (—3) —\? ‘
[t 2cos (8—3) 15 replaced by &2@=% 47w
then
1 . - 1 L
1—2Xcos (§—48)+ \° {_l—l\e”"“” Tl—aett o
1 61«9-3) e—ud—in ]
=eua—a) _6—1-8-5)!1 R WATCRY 1= ,\e““""“f
1 =2 .
S'\ \vneum 1Dig-3) __ Y‘ AeTH T e
’z, sin (0—a\ 5= Th
Therefore

1 'lr{ > N s
N w1y d -t~ l Bt
»/';*'_7,/3»-__,2- Ja SINTen T AT SN NG

m=0 ta=0

Replacing e by 2,

.- 1 ! o
Jl‘-"l']z:“:,é»?\"ﬁ l\'n,-u.:. H

2 3

. mEL 3 —imen=2d

— SNt wEd s
=y J

Since

~M_:{(), in general
7 2a, when p=—1
it follows that m=nr—1 and therefore
'/1 -+ Z;]:: Tl‘l\n’lei"s
Hence, for n= 1,
Jy=—aA""'zin né and Jo=zN\*" cos i (3)
I1I. The Fourter Expansion of
~ 1
(1 =267 €03 268--c*AY)?
In analogy to section I, replace 2 cos 26 hy ¢**+ ¢,
Then

1
(1—26°\° cos 26-+0*\3)?

1
T (1= NI — o N 22
According to the binomial theorem

(I—¢o® \"P"")"‘“?‘(_] D) (a*N\)se2v

=

and

(1—aNe )2 =3 k+1)(a?\})¥ e~
=0
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Therefore

8

©

HE= 3030+ 1) (k1) (02N e

1=0k=0

21{j=k)

Let
jtk=n
and therefore

Then

G—k=n—2k, j=n—k

Zi) 20(” —k+4-1) (k+1) (W) metin=2e

The exponent of ¢ is 2¢[(n—L)—k]8. If & and n—Fk are
interchanged, the exponent of e changes sign but the
cocflicient of e remains unaltered. The terms can
therefore be grouped in pairs so that:

n n—1
')

’)_, Z (n—k4-1) (1) (6*2)" cos (n—2k)26 (4)

n=0 k=0

where the factor 2 i= omitted {rom the term for which

nis even and h=3

&

The <eries (4, may be written a~

7L ’l—l
]]"- Z Anp cos (n—28)26
- (n L=u
where
A =20 —L+1) (31 (2"

Iapandine this series and rearranging the terms in the
form of u Fourier serie-.,
] -3 (-4
]l':-"z 11 K el S—‘(’OH 7{8214,,.,_-

~i=0 n:l
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But
33 SOV 12N L IN
52 Anwr= 2k DM (0N) = (7 5hs
and
gAn+:k.x=2(a'2)\2)nl:ZO(n+k+1)(k+1)(04)\4);‘
9 —1 4)\4
' =2(aix~)n(nf ()1 (Tiw )o
Therefore
2__—~_—l_—_‘ L L9 = 1
H PO {(1 Lo\ 23[@_‘_1)
— (n—1)a*N)(2N\) " cos ?_728} 5)
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